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Abstract— Classical dictionary learning methods for video
coding suffer from high computational complexity and interfered
coding efficiency by disregarding its underlying distribution.
This paper proposes a spatio-temporal online dictionary learning
(STOL) algorithm to speed up the convergence rate of dictio-
nary learning with a guarantee of approximation error. The
proposed algorithm incorporates stochastic gradient descents
to form a dictionary of pairs of 3D low-frequency and high-
frequency spatio-temporal volumes. In each iteration of the
learning process, it randomly selects one sample volume and
updates the atoms of dictionary by minimizing the expected
cost, rather than optimizes empirical cost over the complete
training data, such as batch learning methods, e.g., K-SVD.
Since the selected volumes are supposed to be independent
identically distributed samples from the underlying distribution,
decomposition coefficients attained from the trained dictionary
are desirable for sparse representation. Theoretically, it is proved
that the proposed STOL could achieve better approximation for
sparse representation than K-SVD and maintain both structured
sparsity and hierarchical sparsity. It is shown to outperform
batch gradient descent methods (K-SVD) in the sense of con-
vergence speed and computational complexity, and its upper
bound for prediction error is asymptotically equal to the training
error. With lower computational complexity, extensive exper-
iments validate that the STOL-based coding scheme achieves
performance improvements than H.264/AVC or High Efficiency
Video Coding as well as existing super-resolution-based methods
in rate-distortion performance and visual quality.

Index Terms— Online dictionary learning, sparse representa-
tion, video coding, stochastic gradient descent, K-SVD.
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I. INTRODUCTION

THE state-of-the-art video coding schemes, e.g.
H.264/AVC [1] and its successor High Efficiency

Video Coding (HEVC) standard [2]), have achieved a vital
efficiency by exploring redundancies among pixels through
intra- and inter-prediction. For substantial improvement, a
perspective of disruptive techniques has arisen from the
hybrid framework. One promising attempt for video coding is
to reconstruct high-resolution (HR) video contents with their
sampled low-resolution (LR) versions. For example, scalable
video coding [3] maintained the spatial capability through
down-sampling and inter-layer prediction with up-sampling,
but suffered from a heavy coding burden of the encoder.
To relieve, distributed video coding [4] shifted the complexity
of intensive prediction to the decoder for applications with
constrained encoders. Inspired by Wyner-Ziv coding scheme,
it approaches the rate of joint entropy by separate modeling
of correlated sources. However, its practical performance is
degraded by the estimation of correlated side information.

As an alternative, texture synthesis and hallucination for
up-sampling based reconstruction were introduced. Dumitras
and Haskel [5] developed a texture analysis-synthesis scheme
to reduce the entropy of source information, where the homo-
geneous area is clustered into a small patch and represented
with the epitome contents of associated regions. It can be
regarded as an infant stage to apply sparse dictionary learning
to video coding. Since these patches are close to uniform,
they can be handled under the framework of Markov random
fields (MRFs) with iterative optimization, e.g. belief propaga-
tion. Various side information has been considered to restore
the missing information. For example, spatial correlations
could be inferred based on edges [6], static textures [7], and
assistant parameters [8]. To be consistent with the motion
trajectory, spatio-temporal structures have been developed for
global optimization [9], [10]. Although these methods claimed
to achieve a good perceptual quality, they failed to ensure
pixel-wise fidelity.

To guarantee both evaluations, state-of-the-art
super-resolution methods have been widely considered
for video reconstruction. They estimated correlations between
high-frequency (HF) contents and their sampled sparse
low-resolution versions in a nonparametric sense. According
to the assumptions and methodologies for exploiting such
correlations, they are classified into three categories:
interpolation-based, reconstruction-based, and learning-based.
Interpolation-based methods, such as bilinear and bicubic
methods, exploit the strong correlations within adjacent pixels,
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but blur the discontinuities and edges. Reconstruction-based
methods [11] regularized the super-resolution image with
reconstruction constraints derived from prior knowledge.

Recently, learning-base approaches are prevailing in super-
resolution task, which incorporate dictionary learning to train
an over-complete dictionary for reconstruction with sparse
representation. Pioneered in [12], lost HF information was
inferred based on learned co-occurrence priors from low-level
vision [13] with MRFs in a patch manner. Its core idea is
that pairs of LR-HR patches can be similarly represented
with a corresponding pair of learned dictionaries under the
assumption of sparse representation invariance. Under such
assumption, fully-coupled learning methods [14] utilized bi-
level optimization to train the dictionary pair. However, these
methods are restricted by the supposed sparse representation
invariance. To relax, [15] utilized data clustering to learn a
set of linear mappings between the non-zero representation
coefficients of LR and HR patches. Peleg and Elad [16]
designed a multi-level scale-up scheme to make MMSE
estimation for reconstruction in the sense of feed-forward
neural network. Meanwhile, a Bayesian non-parametric
approach [17] adopted beta-Bernoulli process to learn the
dictionary.

In the line of video coding, motion trajectory is considered
as well as spatial correlations. An example-based method [18]
presented a super-resolution approach for video coding, where
a set of pairs of non-adaptive LR-HR patches are trained
to enhance the reconstruction of high-frequency details.
Ates [19] introduced enhanced skip and direct modes to
integrated spatial super-resolution and frame interpolation with
H.264 and HEVC standard. Considering that primal sketch
priors could enhance blurred edges, ridges and corners [20],
a sparse spatio-temporal representation [21] was developed for
bit-rate video coding. It facilitated reconstruction by learn-
ing an adaptive regularized dictionary of 2-D patches and
3-D volumes and outperformed H.264/AVC in terms of both
objective and subjective comparisons. Since batch learn-
ing algorithms like K-SVD [23] are adopted to solve the
optimized inverse problem, these methods are prohibitive
for image and video signals. In comparison to iterative
batch procedures [23]–[25], online learning has been recog-
nized to be capable of significantly reducing the computa-
tional complexity and memory consumption for training [22].
Furthermore, it could achieve more sparse representation
based on the trained dictionary than improved batch learn-
ing algorithms, e.g. fast alternatives using combination of
analytic and adaptive learned dictionaries [26], analysis-
based sparse representation [27], [28], submodular dictionary
selection [29], [30]. Currently, there exist a challenge to
balance the sparse representation for approximated signals and
overhead of trained dictionary for coding [31]–[33]. However,
these general frameworks do not optimize the sparse repre-
sentation for video sequences with inherent structured sparsity
and hierarchical sparsity. Along with the insight, it stimulates
us to investigate an efficient learning algorithm for training
dynamic time-varying signals.

In this paper, we propose spatio-temporal online dictionary
learning (STOL) for sparse representation with the application

TABLE I

ABBREVIATION TABLE

to video coding. It trains a 3-D spatio-temporal dictionary
by iteratively updating the atoms for asymptotically optimal
representation and fast convergence rate. Unlike the classical
batch gradient descents, it formulates optimized stochastic
approximations by exploiting the structure of sparse coding.
For the training set of i.i.d. samples drawn from the underlying
distribution, STOL sequentially predicts the decomposition
coefficients for each sample over the trained dictionary and
updates the dictionary with stochastic gradient descent algo-
rithm to minimize the expected cost. Hence, the proposed
method could obtain sparse representation for dynamic time-
varying signals with the trained dictionary. Theoretically, it is
proved that the proposed STOL could maintain both structured
sparsity and hierarchical sparsity with better approximation
than K-SVD. It is shown to outperform batch gradient descent
methods (K-SVD) in the sense of convergence speed and com-
putational complexity for large-scale optimization problems.
Furthermore, its upper bound for prediction error is proven to
be asymptotically equal to the training error.

For dictionary learning, online learning incorporates sto-
chastic approximations to exploit the temporal and spatial
correlations by sequentially adapting the small patches from
training data. With respect to classical dictionary learning
based video coding schemes, the design of STOL provides
two advantages. On the one hand, STOL behaves faster than
iterative batch alternatives, e.g. K-SVD and improved dictio-
nary learning schemes. It depends on lower computational
complexity and memory consumption without explicit learning
rate tuning. On the other hand, STOL updates the dictionary
by minimizing expect cost over a convex set of constraints
instead of empirical cost in iterative batch learning. It achieves
sparser representation for practical coding than the improved
dictionary learning schemes for efficiency. For validation,
we apply the proposed STOL algorithm into synthetic data
and video coding. With a sharp reduction of computational
complexity, sufficient experiments show that the STOL-based
scheme achieves both objective and visual quality improve-
ments than H.264/AVC or HEVC as well as current super-
resolution based methods.

The remainder of this paper is organized as follows.
All the abbreviations are summarized in Table I.
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Section II provides the motivation and definition of STOL,
including the proposed framework, the update properties,
and analysis on spatio-temporal and cross-band consistency.
The main learning algorithm is described in Section III with
the analysis of the convergence rate and upper bound of
prediction error. For validation, Section IV compares STOL,
K-SVD and MOD over the synthetic data. Applied into video
coding, Section V provides extensive experimental results to
evaluate in terms of rate-distortion performance and visual
quality. Finally, the conclusion is drawn in Section VI.

II. SPARSE REPRESENTATION WITH SPATIO-TEMPORAL

ONLINE DICTIONARY LEARNING

A. Preliminary
Given arbitrary signal x ∈ R

m generated by a source with
the underlying distribution p(x), sparse coding is the process
of computing its representation coefficients α ∈ R

k based on
the overcomplete dictionary D ∈ R

m×k . It admits a sparse
approximation over D with the k columns referred to as atoms,
when a linear combination of “few" atoms is “close" to x.

To evaluate the sparse representation of x with D, a
loss function l(x, D) is to measure the divergence between
the actual signal x and its optimal reconstruction with D.
Typically, it is formulated as an �1-sparse coding problem.

l(x, D) � min
α∈Rk

1

2
‖x − Dα‖22+λ‖α‖1, (1)

where λ is a regularization parameter and α is solved under
the �1 penalty. When l(x, D) is minimized, D is a “good"
sparse representation for the signal x. Thus, the expected cost
f (D) is minimized for arbitrary x generated by p(x), which
evaluates l(x, D) over the entire support of x.

Definition 1 (Expected Cost): The expected cost f (D) for
the signal x generated by the underlying distribution p(x) is

f (D) � Exl (x, D) =
∫

x
l (x, D) d p (x) , (2)

where D is the trained overcomplete dictionary.
To avoid arbitrarily small values of α, the columns (d j )

k
j=1

of D are commonly enforced to have an �2 norm less than or
equal to one. Consequently, we define C as the convex set of
matrices verifying the constraint.

C � {D ∈ R
m×ks.t .∀ j = 1, . . . , k, dT

j d j � 1} (3)

Thus, f (D) is a joint optimization problem with respect to
the dictionary D and the coefficients α = [α1, . . . , αn] of the
sparse decomposition. However, the occurrence of x is mod-
eled as the random independent sampling from the underlying
distribution p(x), which leads to inability of computing the
cost function f (D) directly. As an alternative, empirical cost
is defined as an approximation of f (D). Given a finite training
set of interdependent signals S = [x1, . . . , xn], it minimizes
the loss function l(x, D) over S to design optimal dictionary D.

Definition 2 (Empirical Cost): The empirical cost fn(D)
for the training set S with n samples is

fn(D) � 1

n

n∑
i=1

l(xi , D), (4)

where D is the trained overcomplete dictionary.

Eq. (4) implies that the overcomplete dictionary D is gen-
erated as a response to fit the mini-batch sample xi in the
training set S within an acceptable margin of error. Generally,
fn(D) provides a good estimate of the expected cost f (D)
when the training set is large enough.

B. Definition and Motivation

Video sequences have similar structures and textures within
one frame or among various frames, which tends to grow along
the contours. When the support set for learning is consistent
with the underlying structures and textures, coefficients for
representation can be reduced by capturing them over the
feature set. A simple example is the contourlet transform [34].
It approximates contour with a multi-resolution directional
tight frame to make a sparser representation than wavelet.
However, analytic dictionaries suffer from the curse of gener-
ality, which cannot adapt to the varying structures and textures
with implicit and parametric mathematical models [35].

To improve generality, trained dictionaries are adopted to
explicitly make sparse representation for specific video con-
tents. Their atoms are iteratively optimized over the training
set. At each iteration, These atoms are updated by minimizing
the empirical cost fn(D) with batch gradient descents. There-
fore, the trained dictionary Dk+1 at iteration k+ 1 is obtained
in a successive form.

Dk+1 = Dk −�k�D fn(Dk) = Dk −�k
1

n

n∑
i=1

�Dl(xi , Dk),

(5)

where �k is an appropriately selected positive definite sym-
metric matrix, which can make the convergence super-linear
or quadratic in favorable cases. Nonetheless, batch gradient
descents involve a burdening computation of averaging gradi-
ents of the loss function �Dl(xi , Dk) over the entire training
set and massive memory consumption required to store the
training set, which makes it impractical for video coding.

Online dictionary learning incorporates stochastic gradient
descents [36] to relieve the high computational complexity
and memory consumption. Instead of averaging over the entire
training set, it randomly selects one sample xt at iteration t
and updates the dictionary Dt with gradient descent.

Dt+1 = Dt − ηt�Dl (xt , Dt ) , (6)

where ηt is the learning rate. Averaging the update over
all possible states of the samples xt would restore the
batch gradient descent algorithm. Given the training set
composed of i.i.d. samples with distribution p(x) = 1/t ,
online dictionary learning iteratively minimizes the approxi-
mate cost to alternate classical sparse coding steps for sparse
representation.

Definition 3 (Approximate Cost): Given the training set S
composed of i.i.d. samples, the approximate cost for S is

f̂t (D) � 1

t

t∑
i=1

l(xi , D), (7)

where D is the trained overcomplete dictionary.
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Fig. 1. The framework of sparse representation with spatio-temporal online dictionary learning for video coding.

Furthermore, online dictionary learning directly optimizes
the expected cost with stochastic gradient descent rather than
the empirical cost over the entire training set. The fact implies
that its convergence rate can be enhanced by minimizing the
approximate cost, as a gradient descent method with variable
step 1/t is applied to the iterative optimization of dictionaries.

C. The Proposed Framework for STOL

Fig. 1 depicts the proposed framework of sparse repre-
sentation with STOL for video coding. As in [21], a video
sequence Fh with group of pictures (GOP) is decomposed
into the selected high-resolution (HR) key frames (KFs)
Xh and the down-sampled low-resolution (LR) non-key
frames (NKFs) Zl . Xh and Zl are encoded and decoded by a
standard H.264 codec. Denote X̂h and Ẑl the corresponding
reconstructed KFs and NKFs, respectively. In the decoder,
the low-frequency (LF) band is obtained by the down- and
up-sampling operators, and the high-frequency (HF) band is
obtained by subtracting LF band from HR band. The goal of
super-resolution is to reconstruct the missing HF band for the
decoded LR NKFs Ẑl . Consequently, the HR version Ẑh of
Ẑl is recovered from Ẑl by the learning-based super-resolution
reconstruction.

In the learning phase, the LF frames are classified into
a primitive layer, a non-primitive coarse layer, and a non-
primitive smoothness layer. Hence, training data are collected
to learn two corresponding kinds of dictionaries in alignment
with adaptive reconstruction of the HF frames. The sparse
representation of 2-D patches and 3-D volumes is optimized
by adaptive regularized dictionary learning: a set of 2-D
subdictionary pairs (Di

l , Di
h), i = 1, 2, . . . , K trained from

primitive patches and a 3-D dictionary (DL , DH ) from non-
primitive volumes. In detail, 2-D dictionary pairs are dedi-
cated to spatial components, e.g. edge segments, bars, blobs,
and terminations. While the 3-D dictionary pair focuses on
blocks with high-frequency energy. The sparse representation
of non-primitive volumes is constrained by the consistency

along the motion trajectory by a trained 3-D spatio-temporal
dictionary.

Considering that batch learning algorithms for training such
dictionary suffer from a high computational complexity and
a degraded coding efficiency for minimizing empirical cost
fn(D) [36], it is desirable to directly optimize the expected
cost f (D) for an improved convergence rate with a tolerance
of approximation error. Denote SL the LF training set in
R

m×n and DL the corresponding LF dictionary in R
m×k . The

spatio-temporal dictionary pair (DL, DH ) is obtained from
training sets (SL ,SH ), where the 3-D LF and HF volumes are
extracted and normalized from a set of frames along motion
trajectory for consistency. For each reference frame Xr

h from
KFs, its estimation X̃h is attained by motion-compensated
frame interpolation approach to consider scene changes from
its preceding and succeeding frames, as shown in Fig. 1.
Consequently, an over-complete dictionary DL with size m×k
(n � k > m) is trained to represent video sequences in a
sparse manner.

Assuming that each patch for prediction is a linear combi-
nation of a small subset of patches with a coefficient matrix
α = [α1, α2, . . . , αn], where the i th column αi ∈ R

k is called
the sparse solution to the i -th patch. Under such assumption,
the super-resolution task is an energy minimization procedure.

fV ideo(α
(t)
i , Xh) = min

n∑
i=1

T∑
t=1

[
1

2
‖Zi

l − DLα
(t)
i ‖22

+λ‖α(t)
i ‖0 + ‖DHα

(t)
i − R(t)

i Xh‖22
]
, (8)

where Zi
l is the i -th patch extracted from the blurred and

down-sampled version of Xh , R(t)
i is a projection matrix

that selects the i -th patch from Xh at time t , and λ is a
regularization parameter. At time t , α

(t)
i is derived based on

DL for sparse solution. In Eq. (8), the first and third terms eval-
uate the approximation and reconstruction error, respectively.
While the second term restricts the number of coefficients to
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maintain sparsity. For video sequences, 3-D volumes are
obtained by concatenating the patches from the non-primitive
coarse layer of Xr

h and those of X̃h in the same location.

f r
V ideo(α

r
i , Xr

h , Fr
h )

= min
∑

i

(
1

2
‖Zi

l−DLαr
i ‖22+λ‖αr

i ‖0+‖DHαr
i −Rr

i Xh‖22
)

,

(9)

Cost function in Eq. (9) shows that dictionary pair (DL , DH )
can be learned from the training sets (SL ,SH ).

The proposed STOL algorithm is developed to maintain
the spatio-temporal consistency as structured sparsity, and
consistency between the HF and LF band as hierarchical
sparsity. While 2-D patches are represented based on the
instinctive features for block-based structures by iteratively
updating atoms of the dictionary, 3-D volumes are predicted
by block-matching based motion estimation to maintain the
consistency of the motion trajectory based on incomplete
visual patterns. Furthermore, we relate the HF and LF band
with the linear mapping for the missing details by scaling-up
a down-sampled version of HF band.

D. Spatio-Temporal Consistency for STOL

In this section, we demonstrate the asymptotic equivalence
among approximation cost, empirical cost and expected cost
with the growth of sample size. The fact implies that the
proposed STOL algorithm (based on approximate cost) and
K-SVD (based on empirical cost) have the equivalent conver-
gence rate for each iteration.

Since fn(D) provides a good estimate of f (D) and f̂t (D)
is an approximation of fn(D), the divergence between f (D)
and f̂t (D) is

E[ f (D∗)− f̂t (D∗t )]
= E[| fn(D∗n)− f (D∗)|] + E[| f̂t (D∗t )− fn(D∗n)|], (10)

where D∗n = arg minD fn(D) and D∗t = arg minD ft (D) are
the optimal solutions to the empirical and approximate cost.
Here, we assume that D∗ is a stationary point of the dictionary
learning problem. The first term of Eq. (10) measures the
accuracy of minimizing the empirical cost instead of the
expected cost. The second term measures the approximation
error for the proposed algorithm based on optimizing empirical
cost. In Proposition 1, we demonstrate that the divergence
between f (D) and f̂t (D) vanishes as t increases.

Proposition 1: Given training volume x from video
sequence and dictionary D in constraint C, the approximate
cost f̂t (Dt ) converges almost surely to the expected cost f (D)
and their divergence converges almost surely to 0 as t →∞.

Proof: Please refer to Appendix A.
Proposition 1 shows that the approximate cost f̂t (Dt )

approaches the expected cost f (D) with sufficient sampling.
Consequently, it also approximates the empirical cost fn(Dn).
Therefore, f̂t (Dt ) is naturally minimized instead of fn(D) as
an approximation of f (D). By minimizing approximate cost
to the expected cost, STOL has better ability to exploit the
structured sparsity than K-SVD. Actually, experimental results

also show that STOL achieves better approximation for sparse
representation than K-SVD and its improved versions IDL.

E. Cross-Band Consistency for STOL

Besides spatio-temporal consistency, STOL also maintains
the consistency between HF and LF bands. We construct a
hierarchical structure like tree with 2 level and n disjoint
branches corresponding to the number of sub-dictionary pairs,
where a node and its parent should be selected at the same
time. At the decoder, the HF band is reconstructed based on
its recovered LF sparse representation coefficients over the
proposed LF-HF dictionary pair.

Ẑh = Ẑ L F + X̂ H F = (DL + DH )α =
∑

i

αi (dli + dhi ).

(11)

Using an interpolation operator U , e.g. bicubic or bilinear,
to fill in the missing rows and columns, the LF band Ẑ L F

is obtained by scaling-up a down-sampled version Zl of the
reconstructed HF band X̂h .

Ẑ L F = U Ẑl = UD X̂h, (12)

where D is the down-sampling operator. Denote Ri, j the
projection that selects the j -th pixel of i -th volume,
x̂i, j = Ri, j X̂h . Analogically, the corresponding pixel ẑi, j in
the LR volume is obtained by ẑi, j = Ri, j Ẑ L F = Ri, jUD X̂h .
Therefore, we assume that ẑi, j = (UD)′ x̂i, j+v̂i j , where (UD)′
is a local operator of UD and v̂i, j is the additive noise. Since
DH is the over-complete HF dictionary of k bases (k > m),
x̂i, j can be represented as x̂i, j = DHαi, j with ‖αi, j ‖0 
 n.

ẑi, j = (UD)′DHαi, j + v̂i, j . (13)

Eq. (13) implies that x̂i, j can be reconstructed with αi, j

over HR dictionary only when ‖ẑi, j − (UD)′DHαi, j ‖22 ≤ ε
is satisfied for zi, j within a limited error ε. Under such
condition, the consistency between the LF and HF bands is
maintained, so that the missing HF details can be recovered
from the its LR sparse representation coefficients derived from
the corresponding LF dictionary DL . Therefore, reconstruction
error shown as the third term in Eq. (9) can be omitted, as it
approaches the limited error ε for sparse representation with
LR frames.

III. MAIN ALGORITHM

A. Online Dictionary Learning Algorithm

As defined in Section II, the online dictionary learn-
ing technique aims to optimize the expected cost function
over i.i.d. samples drawn from the underlying distribution
p(x) = 1/t .

ft (D) = min
D∈C,α∈Rk×n

1

t

t∑
i=1

[
1

2
‖xi − Dαi‖22+λ‖αi‖1

]
(14)

The dictionary D is updated by the first-order projected
stochastic gradient descent.

Dt+1 =
∏
C
[Dt − δt�Dl(xt , Dt )], (15)
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Fig. 2. The diagram of online dictionary learning for 3-D spatio-temporal dictionary. The 3-D dictionary pair (DH , DL ) is constructed by minimizing the
expected cost over the training set (SL ,SH ) for consistency along the motion trajectory.

where
∏

C is the orthogonal projector onto C. In practice,
xt is obtained by cycling on a randomly permuted training set.
The step for gradient descent is determined by δt � a/(t+b),
where a and b are selected according to the statistics of signals.

For large-scale training data, online learning has competi-
tive efficiency as iterative batch alternatives. In the proposed
STOL algorithm for video coding, cost function Eq. (16) is
minimized, which omits the reconstruction error in Eq. (9).

f (DL) = min
DL∈C,α

EẐ i
l

(
1

2
‖Ẑ i

l − DLαi‖22 + λ‖αi‖0
)

(16)

Since �0-optimization is an NP-hard problem, a feasible
strategy is to substitute �0-norm with �1-norm to deduce the
optimal convex approximation.

f̂t (DL) = min
DL∈C,α

1

t

t∑
i=1

(
1

2
‖Ẑ i

l − DLαi‖22 + λ‖αi‖1
)

(17)

Fig. 2 shows the diagram for the proposed STOL algorithm,
where 3-D volumes are extracted from both LF and HF frames
along the motion trajectory to maintain the spatio-temporal
consistency. At arbitrary t-th iteration, one sample xt is drawn
from p(x) at random. The minimization of cost function
Eq. (17) is an �1-regularized least-squares problem, which
can be solved by Cholesky decomposition for the classical
LARS-Lasso algorithm. At iteration t , the coefficient αt for xt

is obtained based on the trained dictionary Dt−1 at iteration
t − 1, and each column of the dictionary Dt is updated under
the convex constraint C.

u j ← 1

A j j

(
b j − Da j

)+ d j , d j ← 1

max
(‖u j‖2, 1

)u j

Here, the auxiliary matrices A, B are updated by At ← At−1+
αiα

T
i and Bt ← Bt−1 + xiα

T
i .

The dictionary Dt is updated by block-coordinate descent
with warm restarts, which minimizes the expected cost

Eq. (17) without tuning learning rate. For global optimum,
Dt is updated column by column for convergence under C.
In STOL, it incorporates stochastic gradient descent to
keep faster convergence than K-SVD with a guarantee of
approximation error. Actually, the optimal dictionary to min-
imize the expected cost is served as the LF dictionary DL .
While HF dictionary DH is derived by relating projection
matrix R, coefficients α, and the LF training set SH , in detail
DH = RSH αT (ααT )−1.

B. Computational Cost for STOL

Video sequences are large-scale signals with high redun-
dancy characterized by high-dimensional and low-rank visual
structures. Consequently, prohibitive computational complex-
ity is a fatal limitation for super-resolution based video coding
schemes with batch learning algorithms. In this section, we
show that the proposed learning algorithm outperforms batch
gradient descent methods such as K-SVD in the sense of con-
vergence speed and computational complexity for large-scale
optimization problems. Inspired by Bottou and Bousquet [36],
the proposed algorithm makes an estimation-approximation
tradeoff.

min
ρ,n

E
[| fn

(
D∗n

)− f
(
D∗

) |]+ E

[
| f̂t

(
D∗t

)− fn(D∗n)|
]

s.t. n ≤ nmax , T (ρ, n) ≤ Tmax (18)

According to Eq. (18), large-scale optimization problems
are constrained by the maximal computing time Tmax that
enables processing more training samples to achieve better
generalization, rather than the number of samples nmax .

For sufficient sampling under limited computing resources,
STOL aims to enhance the convergence speed to rapidly derive
the approximate solution D∗t within a tolerable margin ρ of
approximation error, f̂t (D∗t ) < fn(D∗n) + ρ. Thus, STOL can
sufficiently exploit high spatial and temporal redundancies
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within video sequences. Given optimal dictionary D∗ for NKF
reconstruction, the Hessian matrix H and gradient covariance
matrix G are adopted for evaluation.

H � E

[
∇2

Dl(x, D∗)
]
, G � E

[
∇Dl(x, D∗)∇Dl(x, D∗)T

]
,

(19)

Given arbitrary η > 0, with the probability at least 1 − η, it
satisfies under sufficient sampling

tr
(

GH−1
)
≤ ν and EigenSpectrum (H) ⊂ [λmin , λmax ] ,

(20)

Denote κ = λmin/λmax the ratio of eigenvalues.
In Proposition 2, we show that STOL converges much faster
than batch learning algorithms like K-SVD.

Proposition 2: Given the same computing resources, the
time needed to reach accuracy ρ by STOL and batch learning
algorithm are O(knκ log(1/ρ)) and O(kνκ2/ρ), respectively.

Proof: Please refer to Appendix B.
Proposition 2 implies that STOL achieves better gener-

alization performance for large-scale dynamic signals, as it
performs more efficiently under limited computing resources.
The accuracy for STOL and batch learning algorithms within
same time t can be evaluated.

(
Dt − D∗

)2 ∼ 1

knκ log N

 1

kνκ N
∼ (D∗N − D∗)2. (21)

Remarkably, the convergence speed of batch learning algo-
rithm decreases dramatically when the number of training
samples grows. Its high computational cost is due to averaging
cost over the entire training set and allocating memory for
storage.

C. Update for Sequential Coding

In this section, the upper bound for prediction error is shown
to be asymptotically equal to the training error. As shown
in Eq. (6), Dt is updated based on the previous dictionary
Dt−1 and the selected sample xt . Thus, the generalization
error between training and prediction shall be evaluated for
sequential coding of NKFs.

To assure the properness of optimal Dt at iteration t ,
a relaxed approximate cost is adopted for evaluation,
f γ
t (Dt ) = sup‖D−Dt‖<2γ ft (D). In Proposition 3, we demon-

strate the consistency between training and prediction.
Proposition 3: Given the trained dictionary Dt and arbi-

trary constant η > 0, with sufficient sampling, there exists
ε (l, γ , n, η)→ 0 satisfying

Pr
[
sup

[
Ex f (Dt )− ES f γ

t (Dt )
] ≤ ε

]
> 1− η, (22)

where Ex f (Dt ) and ES f γ
t (Dt ) are the estimated expectation

for prediction and relaxed training error, respectively.
Proof: Please refer to Appendix C.

In view of generalization error, Proposition 3 is translated
as: given Dt and arbitrary constant η > 0, with probability of
at least 1− η, the prediction error is bounded by

Ex f (Dt ) ≤ ES f γ
t (Dt )+ ε (l, γ , n, η) . (23)

In Eq. (23), the second term is the excess error conditioned
on the complexity of training model, which vanishes with suf-
ficient sampling. The fact implies that the average prediction
error Ex f (Dt ) is asymptotically equivalent to the well-tuned
average error in training.

Proposition 3 ensures the predictive performance by relating
the upper bound for prediction error to the tunable traing error.
With sufficient sampling, STOL can asymptotically minimize
the expected cost over the training set. In each GOP, since
dictionary learning is based on the patches extracted from the
key frames (KFs), the reconstruction of NKFs based on the
trained dictionary would be affected by a deviation in statistics
due to motion of objects. For the patch-based dictionary learn-
ing, such deviation in statistics is typically based on three facts.
First, it is often difficult to match the motion trajectory in video
sequence with a linear representation of patches, especially in
low-level vision tasks related to intensity components [37].
The uncertainy of motion trajectory still remains unsolved,
though [38] implies that it would be better to fit it under
the implicit manifold constraints. Second, the training set
would be incomplete for representing those patches for recon-
struction, as distortions like deformation and occlusion would
change the statistics of patches in a nonlinear manner [39].
Third, reconstruction of HF patches from LF ones based on
the trained dictionary is an ill-posed problem [12]. Thus,
Proposition 3 provides a theoretical validation to guarantee the
reconstruction performance based on the dictionary trained by
STOL, especially for those patches cannot be exactly inferred
from the matched atoms in the training set.

IV. APPLICATION INTO SYNTHETIC SIGNALS

As in [23], we employ STOL on synthetic signals to evaluate
its ability to recover the underlying dictionary that generates
these signals. STOL is compared with the batch learning
methods K-SVD and MOD [24]. The generating dictionary
D ∈ R

20×50 was obtained based on i.i.d. samples drawn
from uniform distribution with each of its columns normalized
to a unit �2-norm. The training set {xi ∈ R

20}1500
i=1 was

collected based on a linear combination of atoms of the three
generating dictionary in random and independent locations.
White Gaussian noise with variable SNR was added.

In training, the number of iteration was 50. 50 trials were
conducted for noise levels of 10, 20, 30 dB and noiseless
case, respectively. The number of recovered dictionary atom
was estimated by measuring the error 1−|dT

i d̃i |. A dictionary
atom was supposed to be recovered, when its approximation
error was less than a threshold � = 0.01.

Fig. 3 shows synthetic results for the three algorithms and
the Y-axis is the mean number of recovered dictionary atoms
beyond 50. Each point in Fig. 3(a) means the average result
for ten experiments. It shows that STOL has competitive
results with K-SVD and is more effective than MOD for all
tested noise levels. Remarkably, STOL is more efficient in
the sense of time consumption as shown in Fig. 3(b), where
each trial was conducted 10 times for noise level of 10dB.
The fact means that STOL updates more atoms under the
same time.
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Fig. 3. Recovery performance of synthetic signals for STOL, KSVD, and
MOD, respectively. The number of recovered atoms are evaluated: (a) under
free noise and noise levels 10, 20, and 30 dB; (b) with the growth of time.

V. APPLICATION INTO SUPER-RESOLUTION

BASED VIDEO CODING

A. Implementation
The proposed STOL algorithm is applied into super-

resolution based video coding, where a GOP is composed
of 16 successive frames, or 3 KFs and 13 NKFs. For each
GOP, the first three frames are selected as key frames (KFs)
and the remaining 13 frames are down-sampled with 1/4 size
to serve as NKFs. Both KFs and NKFs are encoded by the
H.264/AVC coding engine in the form of “I P P P · · · .” The
KFs in both current GOP and next GOP are used to learn
dictionary pairs for the consistency along motion trajectory.
With the decoded low-resolution NKFs and its corresponding
dictionary of 2-D patches and 3-D volumes, the HF details of
NKFs are recovered.

In STOL, a volume size is set to 7 × 7 × 2 for optimal
coding with 3-D sparse representation. The training set collects
1024 volumes from each frame, which is a 98× 1024 matrix.
The numbers of iteration for STOL, K-SVD, and IDL are 150,
15 and 15, respectively. The regularization parameter λ is 0.15.

In experiments, we evaluate the performance over test
sequences with the YUV 4:2:0 format, 30Hz frame rate,
and various resolutions including CIF (352× 288), WQVGA
(416 × 240), and DVD (720 × 480). Benchmarks adopted
for validation include the state-of-the-arts H.264/AVC, HEVC,
adaptive regularized dictionary (ARD) scheme [21] with
K-SVD, the scheme with IDL [27], and the fast batch alter-
native with Sparse K-SVD (S-KSVD) [26]. It is noted that
IDL is the latest improved dictionary learning method based
on K-SVD.

B. Dictionary Learning Performance
Initially, we compared learning performance of STOL,

K-SVD, and IDL for video coding with fixed 100 iterations.
Fig. 4 presents the spatio-temporal dictionaries learned by
KSVD and STOL. For evaluation, we define the accuracy fna ,
sparsity fns based on cost function f (x, D).

fna(D) � 1

n

n∑
i=1

‖xi − Dαi‖22

fns � 1

n

n∑
i=1

‖αi‖1 f (x, D)

� 1

n

n∑
i=1

(
1

2
‖xi − Dαi‖22+λ‖αi‖1)

Fig. 4. The trained dictionary with K-SVD and STOL, respectively.
(a) K-SVD. (b) STOL.

They indicate the ability of learning-based dictionary in sparse
representation for video frames. Fig. 5 displays the variation of
accuracy fna , sparsity fns , and cost function f (x, D) with the
growth of time and iteration number, respectively. Comparing
Fig. 5 (a)-(c), it shows that the proposed scheme significantly
reduces the computational complexity with an improvement of
prediction performance. In comparison to K-SVD and IDL,
STOL requires less time for training each sample with a
rapid convergence in large-scale learning of dynamic signals.
Furthermore, STOL is the most trivial in the sense of cost
function, which means that it is desirable to directly optimize
the expected cost for video coding.

C. Rate-Distortion Performance

Fig. 6 provides rate-distortion curves of various video
sequences obtained by the proposed scheme, H.264/AVC,
ARD and IDL. Within the low bit-rate region, the proposed
scheme is competitive with ARD and H.264/AVC and outper-
forms IDL in the rate-distortion performance. For a complete
validation, Table II provides BD-PSNR gain and BD-rate
reduction [42] for the proposed scheme, ARD, and IDL
over H.264/AVC. In comparison to H.264/AVC, BD-PSNR
gain and BD-rate reduction are up to 0.75 dB and 7.5%,
respectively. In summary, the proposed STOL is comparable
to ARD and outperforms H.264/AVC and IDL, especially
for video sequences with complex motion. Moreover, the
proposed scheme is compared with HEVC (HM 8.0) over
Foreman, Akiyo, and Waterfall. In Fig. 7, it can be seen that
the proposed scheme keeps comparative performance with
HEVC, especially for video sequences with low bit-rates and
subtle motion, e.g. Akiyo. Furthermore, we compare the pro-
posed scheme with the fast batch alternative Sparse K-SVD.
Fig. 8 shows the proposed scheme outperforms Sparse-K-SVD
in a noticeable margin.

To further validate the proposed method, we evaluate
STOL and H.264/AVC with “full power" over extensive test
sequences with various resolutions. Here, the GOP struc-
ture is set to “IBPB" with up to five reference frames and
quater-pixel interpolation for H.264/AVC. Table III shows the
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Fig. 5. Results for convergence rate of K-SVD, STOL, and IDL in terms of accuracy, sparsity and cost function with iteration number 100. (a) K-SVD.
(b) STOL. (c) IDL. (d) Sparsity comparison. (e) Cost comparison.

Fig. 6. Rate-distortion curve for performance comparison. The proposed model is compared with H.264/AVC, ARD, and IDL, respectively. (a) Foreman.
(b) Akiyo. (c) News. (d) Waterfall.

TABLE II

PSNR (DB) PERFORMANCE FOR THE PROPOSED SCHEME, H.264/AVC, ARD, AND IDL IN THE LOW BIT-RATE REGION, RESPECTIVELY. THE PROPOSED
SCHEME IS COMPARED WITH ARD AND IDL IN TERMS OF BD-PSNR (DB) GAIN AND BD-RATE (%) REDUCTION OVER H.264/AVC

Fig. 7. PSNR (dB) performance of the reconstructed frames for the proposed scheme and HEVC, respectively. (a) Foreman: 89.3 kbps. (b) Akiyo: 88.3 kbps.
(c) Waterfall: 57.6 kbps.

coding performance for the proposed STOL and H.264/AVC
in terms of PSNR and SSIM, respectively. In overall, the
average BD-PSNR gain and BD-rate reduction in compar-
ison to H.264/AVC with GOP structure “IBPB” are about
0.10 dB and 1%, respectively. Moreover, Fig. 9 provides the

rate-distortion curve for test sequences with various resolu-
tions. We can find that the proposed method still outperforms
H.264/AVC in most cases, especially in the low and moderate
bit-rate region, even though better motion estimation and
motion compensation would be achieved by using B-frames.
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Fig. 8. PSNR (dB) performance of the reconstructed frames from the proposed scheme, H.264/AVC, ARD, and Sparse K-SVD, respectively.
(a) Foreman: 201.5 kbps. (b) Waterfall: 213.9 kbps. (c) BlowingBubbles: 185.7 kbps. (d) Driving: 758.1 kbps.

TABLE III

PSNR (DB) AND SSIM PERFORMANCE FOR TEST SEQUENCES WITH VARIOUS RESOLUTION OBTAINED BY THE PROPOSED METHOD

AND H.264/AVC WITH GOP STRUCTURE “IBPB", RESPECTIVELY. HERE, BD-PSNR AND BD-RATE REFER

TO BD-PSNR GAIN (DB) AND BD-RATE REDUCTION (%)

Fig. 9. Rate-distortion curves for the proposed method and H.264/AVC with GOP structure “IBPB", respectively. (a) Foreman (352×288). (b) BlowingBubbles
(416× 240). (c) BQMall (832× 480). (d) ParkScene (1920 × 1080).

Remarkably, the proposed method can achieve up to 0.33 dB
gain in PSNR and 6.68% reduction in bit rate.

It is worth mentioning that rate-distortion performance for
the proposed method would vary with the statistics of the video
sequences. This fact implies that training and reconstruction

with various patch sizes would fit various statistics within
the video sequences. Thus, the proposed method would be
improved by considering a hierarchical tree to adaptively deter-
mine the patch size for training and reconstruction. In future
work, it would be promising to adopt fast decision algorithm
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Fig. 10. The visual comparison between the proposed scheme and H.264/AVC. From left to right and from top to bottom: original and reconstructed
video frames of Foreman, Waterfall, Driving, and BlowingBubbles obtained by H.264/AVC, and the propose scheme, respectively.

TABLE IV

SUBJECTIVE QUALITY IN TERMS OF SSIM AND DMOS FOR THE PROPOSED ALGORITHM, H.264/AVC, ARD, AND IDL, RESPECTIVELY

to determine current patch size from the reconstructed patches
with convolutional neural network (CNN) or probabilistic
models with joint optimization for adjacent patches.

D. Visual Quality

Fig. 10 shows the proposed scheme achieves better visual
quality than H.264/AVC, especially in the texture regions like
“tree" region in Waterfall and Driving. To further compare
the visual effects, SSIM [40] and DMOS [41] are introduced,
where higher SSIM or smaller DMOS scores represent better
visual quality. Obviously, Table IV shows the proposed scheme

achieves best visual quality. To be concrete, it is competitive
with ARD and IDL and obviously outperforms H.264/AVC.
Similarly, Fig. 11 and 12 compare SSIM performance with
HEVC and Sparse K-SVD, respectively. It is consistent with
the rate-distortion comparison in Section V-C.

E. Computational Complexity

Without loss of generality, we discuss the the compu-
tational complexity involving with learning and decoding
process. In learning phase, the proposed scheme commits
a fast convergence speed to update with the training data
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Fig. 11. SSIM performance of the reconstructed frames for the proposed scheme and HEVC, respectively. (a) Foreman: 89.3 kbps. (b) Akiyo: 88.3 kbps.
(c) Waterfall: 57.6 kbps.

Fig. 12. SSIM performance of the reconstructed frames obtained by the proposed scheme, H.264/AVC, ARD, and Sparse K-SVD, respectively.
(a) Foreman: 201.5 kbps. (b) Waterfall: 213.9 kbps. (c) BlowingBubbles:185.7 kbps. (d) Driving:758.1 kbps.

TABLE V

COMPUTATIONAL COMPLEXITY IN TERMS OF LEARNING SPEED (SEC/GOP) AND DECODING SPEED (SEC/FRAME) FOR THE PROPOSED SCHEME, ARD,
AND IDL, RESPECTIVELY. RUN-TIME RATIOS (%) FOR THE COMPARATIVE METHODS ARE ASSESSED AS: RT-RATIO= tC O M P /tP RO P ×100%.

TABLE VI

COMPUTATIONAL COMPLEXITY FOR THE DECODERS OF THE PROPOSED SCHEME, H.264/AVC, AND HEVC, RESPECTIVELY. FOR THE PROPOSED

SCHEME, BOTH THE DICTIONARY LEARNING SPEED (SEC/GOP) AND RECONSTRUCTION SPEED (SEC/FRAME) ARE PROVIDED

in a refined manner. It is worth mentioning that the pro-
posed scheme iterates ten-fold more times than K-SVD in
comparable elapsed time. Decoding performance depends on
the reconstruction of NKFs by combining atoms with sparse
representation coefficients. Since the proposed scheme directly
optimizes the expected cost, it obtains sparser coefficients
for less computation. To keep fairness, all the experiments
are implemented with Matlab on a PC with 3.0 GHz dual-
core CPU and 8G RAM. Table V provides the computational
complexity for the proposed scheme, ARD, and IDL in terms
of learning and decoding speed, where the run-time ratio is
used for evaluation. For ARD and IDL, their run-time ratios

for learning range from 351% to 1567% and 392% to 1610%,
respectively. While there is an approximately 20% reduction in
decoding complexity. The facts mean that the proposed scheme
is efficient for video coding schemes with learning-based
super-resolution, which relieves the prohibitive complexity for
batch learning algorithms like K-SVD and IDL.

In addition, Table VI provides the complexity comparison
with H.264/AVC and HEVC. For clarity, the complexity
for learning and reconstruction are both provided. Here, the
learning complexity is evaluated in terms of seconds per GOP,
as we make dictionary learning for each GOP. In general, the
computational complexity is about 1.5-10 times and 3-20 times
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Fig. 13. PSNR and SSIM performance for fixed and adaptive selection of key frames in the proposed scheme, respectively. (a) PSNR for Foreman: 201.5kbps.
(b) PSNR for Akiyo: 204.5kbps. (c) SSIM for Foreman: 201.5kbps. (d) SSIM for Akiyo: 204.5kbps.

in comparison to H.264/AVC and HEVC, respectively. The
computational complexity for learning has been significantly
reduced to about 0.5 ms for each pixel. Considering that the
proposed method is implemented with Matlab, it is possible
to further reduce the computational complexity for practical
purpose by transplanting the proposed algorithm to C/C++.
Remarkably, it would be better to develop a flexible and
hierarchical structure to determine patch sizes. Thus, fast
decision algorithm can be adopted to reduce the computa-
tional complexity for dictionary-based reconstruction with a
guarantee of rate-distortion performance.

F. Key Frames Selection

Naturally, the selection of key frame would affect recon-
struction performance. The optimal point of PSNR and SSIM
value is generally located at the third key frame in a GOP. The
proposed scheme utilizes two couples of first three successive
frames for dictionary learning, and it is shown to be close to
the adaptive scheme in the sense of coding performance as
follows.

The adaptive scheme searches uncorrelated key frames to
remove temporal redundancies based on the trained dictionary
pairs. To measure the difference on structure characteristics
for each frame, primitive frames are extracted by orientation
energy through a set of Gaussian derivative filters.

O Eσ,θ = (I ∗ f odd
σ,θ )2 + (I ∗ f even

σ,θ )2, (24)

where f odd
σ,θ and f even

σ,θ are the first and second Gaussian
derivative filters at scale σ and orientation θ , respectively. The
key frames in the GOP Gn are selected by maximizing their
mutual difference D(i, j).

i = arg max
i, j∈Gn,i �= j

D(i, j) = arg max
i, j∈Gn ,i �= j

L−1∑
j=1

(O Ei − O E j )

(25)

Here, L is the size of Gn , and O Ei and O E j are primitive
areas in i -th and j -th frame, respectively. We select three
frames with large differences D(i, j) as KFs.

Fig. 13 compares the PSNR and SSIM performance with
fixed and adaptive KF selection scheme for Foreman and
Akiyo. The adaptive scheme does not show advantages over
the fixed one, as large motion vectors between KFs require
more bit-rates for coding. For example, the adaptive scheme

selects the 33-th to 35-th frames as key frames and reconstructs
them with a lower PSNR than the fixed scheme. Moreover,
the adaptive scheme would be trivial for video sequences with
subtle motion, as similar structures in one GOP narrows the
gap between the largest and smallest value of D(i, j).

VI. CONCLUSION

In this paper, a spatio-temporal online dictionary
learning (STOL) algorithm is proposed for sparse
representation in efficient video coding. By randomly
selecting one i.i.d. sample from the underlying distribution
to update the dictionary at each iteration, it trains the
3-D low-frequency and high-frequency dictionary pair for
asymptotically optimal representation and fast convergence
rate. Moreover, it directly optimizes the expected cost rather
than the empirical cost to maintain the spatio-temporal
and cross-band consistency for video volumes. It requires
lower memory consumption and computational cost without
explicitly tuning the learning rate. For large-scale optimization
problems, it has been shown that the STOL scheme could
maintain both structured sparsity and hierarchical sparsity
with better approximation and convergence speed than batch
gradient descent algorithms. Applied into large-scale dynamic
video signals, STOL is integrated into the framework of
super-resolution based video coding. Experimental results
show that the proposed scheme achieves better coding
performance with a significantly reduced computational
complexity in comparison to K-SVD and IDL.

APPENDIX A
PROOF OF PROPOSITION 1

Firstly, we verify that the proposed cost function f (D)
satisfies the four assumptions in [22].

i) According to Eq. (14), f (D) is three-order differentiable
with continuous derivatives. Its lower bound is 0.

ii) For the learning rates ηt = 1/t , we have
∑∞

i=1 ηt = ∞
and

∑∞
i=1 η2

t = π2

6 <∞.
iii) Since eigenvalues of Hessian matrix H are constrained

in [λ1, λ2], it holds for non-negative constants Ak and Bk .

Ex(‖∇Dl(x, D)‖k) ≤ Ak + Bk‖D‖k , k = 2, 3, 4 (26)

iv) Columns {di } of D are constrained by C in Eq. (3).
Hence, we consider Eq. (10) for proof. When ran-

domly selecting samples for updating {di }, the divergence
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between the expected and empirical cost is upper-bounded by
Vapnik-Chervonenkis (VC) bound c

√
(k/n) log (n/k). To sim-

plify, its logarithmic term can be eliminated with chain
techniques.

E[sup | f (D∗)− fn(D∗)|] ≤ c

√
k

n
−−−→
n→∞ 0 a.s.,

where c is arbitrary positive constant. Thus, we obtain

f (D∗)− fn(D∗) −−−→
n→∞ 0 a.s. (27)

For the divergence between the approximate and empirical
cost, we show their convergence at first. Since fn(D)− fn(Dn)
is Lipschitz, [31, Proposition 4] shows that the divergence
between D∗n and D∗ converges almost surely to 0 when
n→∞.

fn(D∗)− fn(D∗n) −−−→n→∞ 0 a.s. (28)

For the approximate cost, f̂t+1(Dt+1) − f̂t (Dt ) is
considered.

f̂t+1 (Dt+1)− f̂t (Dt )

= f̂t+1 (Dt+1)− f̂t+1 (Dt )

+
[

l (xt+1, Dt )− fn (Dt )

t + 1
+ fn (Dt )− f̂t (Dt )

t + 1

]
.

Here, f̂t+1(Dt+1)− f̂t+1(Dt ) ≤ 0, as Dt is updated by Dt+1.
Since ft is the lower bound of its approximation f̂t , it holds
f̂t+1(Dt+1) − f̂t+1(Dt ) ≤ 0. Thus, the upper bound condi-
tioned on previous information Ft for dictionaries and sparse
representation coefficients are developed.

E

[
f̂t+1 (Dt+1)− f̂t (Dt ) |Ft

]

≤ E[l(xt+1, Dt )|Ft ] − fn(Dt )

t + 1
≤ ‖ f (Dt )− fn(Dt )‖

t + 1

≤ c
√

k√
t(t + 1)

.

Here, ft (Dt ) approaches fn(Dn) when t → n. Since
E[‖ f (D∗) − fn(D∗)‖∞] ≤ c

√
(k/n), approximate cost con-

verges almost surely as t increases to ∞.
Finally, we prove the divergence ρ between the approximate

and empirical cost vanishes when t → n and n → ∞.
Since f̂t (Dt ) is non-negative quasi-martingale [22], its holds∑∞

t=0 E[ f̂t+1(Dt+1) − f̂t (Dt )|Ft ] < +∞ a.s almost surely
for the conditional expectation of its variations. Introducing
the converging fn , the cumulative divergence between the
approximate and empirical cost is bounded.

∞∑
t=0

E[ f̂t (Dt )− fn(Dt )|Ft ] < +∞ a.s.

Therefore, the divergence ρ converges almost surely to 0,
when t < n →∞.

f̂t (D∗t )− fn(D∗t ) −−−−−→t<n→∞ 0 a.s. (29)

Eq. (29) implies that ρ can be reduced with sufficient
sampling. Combining Eq. (27)-(29), the upper bound for
Eq. (10) is developed.

E[| f (
D∗

)− fn
(
D∗n

) |] + E[| f̂t
(
D∗t

)− fn
(
D∗n

) |]
≤ c

√
k

n
+ ρ = O

(
ρ +

√
k

n

)
−−−→

n→∞ 0 a.s.

As a result, the divergence between the expected and approx-
imate cost vanishes almost surely with sufficient sampling.

APPENDIX B
PROOF OF PROPOSITION 2

Murata [43] has proved that the learning curve of optimal
1/t-annealed online learning is asymptotically given by

E

[
f̂t (Dt )

]
= f

(
D∗

)+ 1

2t
tr(G∗H−1). (30)

It coincides with batch learning algorithm in the order of
O(1/t), which means STOL has the same convergence rate
with K-SVD at iteration t . However, Eq. (5) and (6) show
that STOL only needs k derivatives for one sample rather than
all n samples required by K-SVD. Thus, their computational
complexities for each iteration are O(nk) and O(k), respec-
tively.

Batch learning algorithms require O(κ log (1/ρ)) for each
derivative to reach accuracy ρ [44]. Similarly, we can estimate
for STOL.

Ex

[
f̂t (Dt )− fn (Dn)

]

= Ex
[
tr

(
H (Dt − Dn) (Dt − Dn)′

)]+O (1/t)

= tr
(
HEx [(Dt − Dn)] Ex [(Dt − Dn)]′ +HVars [Dt ]

)
+O (1/t)

≤ tr (GH) /t +O (1/t) ≤ νκ2/ρ +O (1/t) .

It means that STOL can reach accuracy ρ within νκ2/ρ +
o(1/ρ) with convergence rate O(1/t). Thus, the time needed
for K-SVD and STOL to asymptotically reach accuracy ρ is
O(knκ log(1/ρ)) and O( kνκ2

ρ ), respectively.

APPENDIX C
PROOF OF PROPOSITION 3

Since f (Dt ) and ft (Dt ) are based on l(Dt , αt ), it holds [45]

Pr
(
sup‖Ex f (Dt )− ES f γ

t (Dt )‖ > ε
)

≤ 4E

[
N∞ (l, γ ,S) exp

(−nε2

32

)]
, (31)

where N∞(l, γ ,S) is the covering number in ∞-norm for S.
Denote N∞(l, γ , n) its supremum for training set consisting of
n samples. The upper bound of such supremum is derived [45].

lnN∞ (l, γ , n) ≤ 36 (p − 1)
a2b2

γ 2 ln

(
2�4ab

γ
�n + 1

)
, (32)

where ‖x‖p ≤ b and ‖αt‖q ≤ a with 1/p + 1/q = 1. Let
η = 4N∞(l, γ , n) exp(−nε2/32). These exists ε(l, γ , n, η):

ε (l, γ , n, η) =
√

32

n

(
ln 4N∞ (l, γ , n)+ ln

1

η

)
. (33)
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With sufficient sampling, we compare Eq. (32) and (33).

ε ≤ ε0(γ )
√

ln n/n ∼ o(ln n/n)→ 0.

Consequently, given arbitrary η, ε vanishes when t → n
and n → ∞. Since E[N∞(l, γ ,S)] ≤ supS N∞(l, γ ,S) =
N∞(l, γ , n), ε ≤ ε0 → 0 can be arbitrarily small. As a
conclusion, Proposition 3 is drawn from Eq. (31).
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